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BUTLER ANALYSES 

If the choice of generalized coordinates for determining 
the transient response of a non-symmetric structure were not 
eigenvectors but were modes of deformations due to operating 
loads, there would be certain advantages. Among these would be: 
1. the economy of requiring only a small number of modes, 2 .  the 
avoidance of having either to cull out certain non-participating 
modes or to retain the non-participating modes at the expense of 
having to operate with larger order matrices, and 3 .  the con- 
fidence of getting well converged solutions. Using load response 
modes as generalized coordinates is properly classified as the 
Ritz Method. 

The interest in the case of non-symmetric stiffness 
derives from structures with active control systems. The assym- 
metry comes from the sensor being situated at a different loca- 
tion than the actuator. Loads that would be typical of those 
used in the design of control systems are: externally applied 
forces  and pressures, vernier jets whose firing is commanded by 
the control system, and constraints from appendages assigned to 
attach points. Such a solution method is developed here as a 
DMAP ALTER packet to the Statics Rigid Format in NASTRAN. The 
Inertia Relief Rigid Format would appear to be a more natural 
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host for such an ALTER packet, because it carries out full proc- 
essing of mass. Its prohibition against boundary constraints 
disqualifies it, hence Statics with modifications to process mass 
is used as host. 

THEORETICAL APPROACH 

The theory will be organized in 5 parts. It will de- 
scribe the mathematical decisions on using the original stiffness 
matrices in the development of fundamentals first. It will 
describe the generation of harmonics from each fundamental, 
second. Then it will develop the adjoint vectors third. Having 
a full complement of primary and adjoint generalized vectors, 
the next step is to orthogonalize them and finally to integrate 
them into an actual solution by constructing the generalized mass 
and generalized stiffness and reconciling the form of the gener- 
alized damping. 

The methods presented herein are an outgrowth of a new 
non-collocated sensor actuator analysis method under development 
by H. P. Frisch at the NASAIGSFC, Code 712.l The motivation f o r  
the NASTRAN/DMAP implementation presented herein is to provide a 
working capability which can be used f o r  both current practical 
applications and for the evaluation of the new analysis method 
prior to its inclusion into the general purpose multi-flexible 
body data preparation program FEMDA. 

1. Frish, H.F. “IAC Program FEMDA, Theory and User’s Guide, 
Interface from Structural Analysis Output Data to Input Data for 
Multi Flexible Body Dynamics Analysis,” NASA Tech Brief Draft, 
J u n e  13, 1388. (Call author for status info 301-286-8730) 
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FUNDAMENTAL MODES 

A structure must be defined according to its elastic 
distribution, its damping distribution, its mass distribution, 
its boundary conditions and its complement of those loading 
conditions which are active during its operation under a control 
system. Each such loading that can be applied independently of 
some of the other loadings should be treated as a distinct defor- 
mation-producing condition; i.e. as one producing a unique static 
response shape. Within the theory of linear elasticity the 
magnitudes of static response to a static loading varies directly 
as the magnitude of the loading, so a simple unit magnitude of 
load is all that is necessary to establish the shape of an in- 
dividual mode into which the structure deforms. A sketch of a 
cantilevered beam with an end load illustrates the point. The 
loads are graduated from 1 unit, to 2 units, to 3 units. 

t....... L.......+ 

-1- 

P3 
-I 2 z  

The ratio of deformation to load stays constant at 
L3: 3Eh as the load varies. The same holds true at positions 
other than the tip deflections. For instance, the deflection at 
an interior point, such as L / s  where 1 < s ( a, is 

313 



RITZ METHOD FOR TRANSIENT RESPONSE 
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS 

6(+) = -(3 PL3 - s j  1 , therefore 
6EIs2 

which shows that the ratio P 6EIs 2 ( 3  - +) 
of deformation to load at an interior point stays constant as 
load varies. The notion of shape that is independent of ampli- 
tude can be easily depicted by a sketch of a violin string being 
played in its fundamental mode. 

All three show the string sounding the same pitch (frequency, but 
at different loudnesses (amplitude). All 3 deformations are 
considered to have the same shape. 

Therefore, in order to get started, a controlled struc- 
ture must be exercised with a unit load for each loading condi- 
tion, which can vary in magnitude independently of other loads. 
This will produce, what will be called, the set of fundamental 
modes for the complement of loading conditions. It was assumed 
at the start.of this derivation that the set of loads produced a 
set of unique static modes. This assumption needs to be tested 
againsa a criterion for uniqueness. The criterion that is ger- 
main here is linear independence. The modes need to be put on an 
equal footing for such a test by normalizing them uniformly. 
There i s  a choice of methods for normalizing at this point. 
Because this is a dynamics problem, one would be inclined toward 
mass normalization, but for now a simple Euclidean length will 
s u f f i c e  to put the modes on an equal footing to establish linear 
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independence. Later, when the modes are orthogonalized, they 
will be normalized to mass. Normalizing to maximum or to the 
amplitude of a common position will be excluded, because of the 
bias that would be introduced in the linear independence check. 

Initially static modes are to be obtained by solving n 
loadings. 

Each of the {uj) of CUI will be individually normalized by its 
Euclidean length. Compute the individual normalizing constants 
according to 

Each term of {uj} will now be divided by the square root of 
the normalizing constant n Name this normalized fundamental 

j' 

-{uj) 1 z {$Ij}. 
( 3 )  PHI sub j, {Qj}; i . e .  - 

j 
4 n 

I n  order to use these static deformations as generalized 
coordinates, t hey  should be linearly independent. Now we are 
faced with the decision as to xhat criterion of' linear independ- 
ence to use and what tolerance to allow. The classical defini- 
tion of linear independence is that the Gramian 0. The 
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? 

Gramian& is a determinant of the matrix of the dot products of 
each coordinate into every other coordinate. Translated to the 
context in which we want to consider it, assume that the group of 
vectors Q1- - - - 9, is a set to be tested, then the Gramian f o r  
them is 

= 0, the set of 9, are a dependent set, but if it If GC$ ,..... 
is ) 0 the set of @* are linearly independent. In a finite 
number system, such as that under which a digital computer oper- 
ates, the establishment of a true zero is difficult, if not 
impossible. Consequently the decision as to what criterion to 
use rests on the practical consideration of how much impurity to 
allow in the set that we want to use as the expansion functions. 
If the Cramian is just slightly greater than 'zero, it implies 
that yes a functional relationship can be set up for one in the 
set with respect to the others, because imperfections creep in to 
contaminate the zero computation. Now if all $ I s  were normalized 
to unit3 and constituted a truly linearly independent set, then 
the value of the Gramian would be unity. 

@n' 

G(unity normalized $ 1  = 1. 

2. TENSOR ANALYSIS, by I. S. Sakolnikoff; pp 6 ;  John Wilejr,l951 
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Any departure from 1 in the Gramian of this unity normalized set 
means that some imperfection is creeping in and the further the 
descent from 1 towards zero implies more and more imperfections 
away from true linear independence. So What! Our goal is to 
have a good set of vectors so that when we expand our solution in 
them, we will get good accuracy and get good convergence. If we 
have a set of linearly independent vectors but too few of them to 
span the range of actions in which our structure will operate, we 
will fail to converge close enough to a correct solution. If we 
admit too many vectors that are almost independent, but do have 
some imperfections, the answers will contain biased emphases and 
will definitely contribute amplitudes that are too great in some 
modes. In further consideration of the practical factors that 
will govern our decision, we ask, "What will it cost to find out 
if there is linear independence?" In the case of the Gramian, 
the computations involve the creation of a full matrix of vector 
dot products that must then be decomposed and finally the product 
of all diagonal terms of the decomposed matrix forms the Gramian 
determinant. Decompositions are expensive, so a method other 
than using the Gramian would be worth while to investigate. 

Another approach is to look at the insredients of the 

Gramian i.e. the individual matrix dot products. By definition 
the d o t  product of 2 vectors A and B is 

A . B = IAl-x lBI  cos 8, where t3 is the generalized angle 
betc;een the 2 -Jectors. This can be extended to vectors in N-di- 
mensicma1 space. Set up a criterion based upon the size of the 
angle that a trial vectar- @ makes with each of those $n that have 
a1read;i been judg4 linearly independent. 
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threshhold value. Ideally ‘I: would be n / 2  for  an orthogonal set 
with perfect linear independence. The poorest possible value 
would be that for which 9, and qk are coincident, i.e. zero 
angle. This criterion can be rephrased by saying that it tests 
how well cos 8 compares with cos a / 2  

The desire is to hold the angle between test vectors to be some- 
where between a threshhold and n12. If the threshhold angle were 
 AI^, K = cos 7r/3 = .5, then the test would require the cosine of 
the angle between test vectors to be less than 0.5 : 

< 0 . 5  = K for all 1< n < k. 

Once K has been decided upon, the test is carried out against 
every Qn for  n < K .  

In the case of the cosine test, the matrix of dot pro- 
ducts would have to be formed as in the case of the Gramian, but 
no decomposition need be done. The absolute value of each term 
is compared to K .  

The Gramian test has the advantaqe or making its decision 
by comparing only one number against a threshold while the cosine 
test involves comparison of every ratio in a column auainst a 
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threshhold. The term by term processing involves only simple 
operations; the net result is that the cosine test is much less 
expensive than the Gramian test. The cosine test has been chosen 
for this method. 

Modes, determined solely on the basis of static loads, 
are questionable to apply without supplement to the solution of 
dynamics, because they are devoid of inertia effects. Supplemen- 
tal modal vectors can be generated by finding the deformation due 
to forces derived from accelerating masses distributed through 
the structure by an amplitude equal to the vector of elastic 
deformation. Call the deformation from inertia effects, ac- 
celerated by amplitudes derived from the fundamental mode, the 
first harmonic. A second harmonic can be generated by the scheme 
used to generate the first harmonic, except that the the inertias 
are now accelerated through amplitudes derived from the first 
harmonic. Similarly, a third harmonic can be generated from the 
acceleration of mass through the amplitudes of the second har- 
monic, etc. Eventually the upper harmonics will tend towards 
congruence, so there will be an nth harmonic beyond whlch no 
distinct modes will be added. The measure to be used for  finding 
the useful limit will be linear independence. 

The set of linearly independent modes, consisting of a 
group of fundamentals plus groups of harmonics associated with 
each fundamental, when normalized to the Euclidean length, then 
orthogonalized, xi11 be used as modes of generalized coordinates 
in expanding the behavior of a structure under the management of 
a control system. The mathematics of th?se inertia modes f o l -  
lows. The mass of the structure bLL] will be accelerated by an 
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amplitude distributed spatially according to the shape of the 
normalized - but not orthogonalized - fundamental mode {qf) to 
create an inertia forcing for the first harmonic {Fhl); i.e. 

2 .. 
( 8 )  {of) = ( e ,  dr_ cos ut} = ( q l f (  -w cos ut 

dt" 
The shape of the deformation through which the mass will be 
accelerated is established by qf. The effect of the term 
(w2cos wt) is to merely amplify the shape as a function of time. 
Our interest, at this stage of the derivation, is only in the 
shape and not the total dynamic response, therefore the forcing 
can be treated as a statics problem with the spatial distribution 
of the set of accelerations, limited to any instant of time, 
theref ore .. 

IqfI N IqfI and the resulting static force is 

Apply this force to the structure and sol-"-e for the response. 

from which the response can be explicitly isolated: 

The {uhl) so obtained will be normalized by the Euclidean length 
and will be tested f o r  linear independence , which if accepted, 
will be named {qhl} and will augment the complement of Ritz 
modes. This first harmonic will have a shape of deformation 
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sufficiently unique to make it worth while to consider it as the 
basis for accelerating the mass through its spatial behavior to 
obtain a second harmonic, similar to the way that the fundamental 
was used in the generation of the first harmonic. Mathematically 
the method of forming the second harmonic follows the pattern 
already established for the first harmonic. Form the forcing 

. .  
static amplitude lqhll 2 1 qh1l , then solve for the static 
response {uh2j from 

Ezt rac t (uhz} explicitly . 

The {uhZ} so obtained will be normalized by its Euclidean 
length and will be tested for linear independence, which if ac- 
cepted, will be named {qhz) and will augment the complement of 
Ritz modes. A question arises as to the extent to xhich a can- 
didate harmonic should he tested for linear independence. Should 
it be tested against every other vector established up to this 
point, or should the candidate harmonic be tested for linear 
independence only against Its parent tundamental and the 
harmonics that are spawned from that fundamental alone? From an 
algorithmic standpoint the latter route is favored, because all 
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quantities stay within an inner loop. The merit of this deci- 
sion can be tested and be replaced if need be. It is known that 
as the recursion steps are carried out for higher harmonics, the 
deformations will tend toward congruence so there is a definite 
need for testing each new candidate harmonic against its parent 
and siblings. If there is no physical risk for so limiting the 
linear independence check to the family associated with just one 
fundamental, it will be opted for here. 

A certain pattern starts to appear from the development 
of these two harmonics. The matrix product [KLL]-l[MLL] is used 
repeatedly. Consequently, it can be generated once and saved for 
recall in the generation of any level of harmonics of any fun-  
damental. Name this matrix product 

-1 
(15) CSOLi3 = [KtL] [MLL] , where 1 can take on the BCD 

character for the primary or the adjoint mode, and * can take on 
either blank for primary or T (for transpose, for the adjoint. 
Discussion of adjoint mode generation will be taken up subse- 
quent ly . 

Capitalizing on the pattern that has been revealed, all 
f i r s t  harmonics f o r  all fundamentals can be generated in a series 
of matrix operation as follows, as adapted for the primaries: 
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This can be compressed into 

Equations (15,15A,15B) represent all possible inertia response 
raw data for forming first harmonic modes of primary fundamen- 
tals. 

Normalization of these responses can also be performed on 
all vectors treated as a matrix. The Euclidean length can be 
extracted from the multiplication of [uH1] by itself. 

Strip off the diagonal, take the inverse of each, f o l -  
lowed by its square root, to form a diagonal matrix of scale 
factors mode by mode. 

Apply this matrix of scale factors to the first harmonic respons- 
es, of fundamental inertia loadings, as a post multiplication 
operation to get a set of candidate normalized harmonic modes. 

i 15E) [UHl] bCALH1] = ['E] 
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This matrix of candidate first harmonics needs to be tested for 
linear independence. Testing will proceed in two parts. A1 1 
first harmonics will be tested against all other first harmonics, 
then all first harmonics will be tested against all fundamental 
modes. Start with the harmonics by themselves. The cosine test 
involves taking the dot product of every mode against every other 
mode. This is done in a single matrix operation. 

Examining the [ DOTHI ] matrix closely, one can recognize that the 
first row represents the dot product of the harmonic (first in 
sequence) against each of those in the set of harmonics. The 
second row represents the dot product of the harmonic (second in 
sequence) against each of the set of harmonics. Et cetera. 
Consequently, the next step is to strip off one row to examine 
how well this candidate harmonic holds up in the cosine test 
versus other first harmonics. Next another row is stripped off 
and this candidate is tested and so on until all candidates have 
been examined. If the vectors had not been initially normalized 
to length, it would have been necessary to do so at this point to 
form the cosines. As a consequence, the matrix DOTHl consists of 
all cosine terms. Going back now to the first row, some detail 
will reveal a.pattern for systematizing all of the candidates. 

Select one term at a time starting with the 2nd and take 
its absolute value then compare that value with K .  Shift the 
index to the 3rd and do the same. Continue until either a value 
greater than K is encountered or until the the end of the row is 
reached. If any term tests greater than K ,  catalog the row 
number and proceed to the next row. All successful candidates 

324 



RITZ METHOD FOR TRANSIENT RESFONSE 
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS 

will be eligible to be tested against the matrix of fundamental 
modes. The harmonic vs. fundamental test will patterned after 
the harmonic vs. harmonic test. All successful candidate 
harmonics will be held in reserve to form the basis of 2nd 
harmonics before they will be merged with, but in sequence after, 
the fundamental modes. 

The number of successful first harmonic modes may be 
fewer than those in the set of fundamentals. This does not 
matter, because the method of computing harmonics is independent 
of the size of the order of the vectors from which they are 
derived. The generation of second harmonic modes and higher will 
proceed along the pattern just outlined for first harmonic modes, 
except that after the responses to inertia loads have been com- 
puted, the successful modes from which they were derived, will be 

th merged into the matrix of previous Ritz modes. Now the i- 
set of harmonics will be tested for linear independence vs. not 
only themselves but against all other Ritz vectors including 
fundamentals and all previous order successful harmonics up 
through the (i-l)-. th 

The generation of higher harmonics will be subject to a 
choice of two limitations. The analyst may want to limit the 
maximum number of harmonics to be admitted for any particular 
investigation because of, say, a study in a low frequency domain. 
He can invoke such control by giving the value of the maximum 
number of harmonics to the parameter MODSPEC. Declining to 
assign a value to MODSPEC will cause the number of harmonics to 
be limited by those that pass the linear independence check. 
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ADJOINT MODES 

For the non-symmetric problem, adjoint vectors are re- 
quired to obtain the reduced order coefficient matrices. There 
are no set rules for introducing the adjoint basis. In the 
spirit of Lanczos method, a trial method is introduced and 
refined. For lack of any better trial scheme, the starting 
matrices of the adjoint system that will be used here will 
consist of- the transpose of the original [KLL] matrix; i.e. k:L], (which will also be non-symmetric), and the original load 
vectors 

The static solution of this adjoint system under the n 
original loads yields a set of responses 

Each of the {vj} of CVIl will be individually normalized by its 
Euclidean length. Compute the individual normalizing constants 
according to 

I 

(17) 
[{.Vj) {Vj}] = a j' 

Each term of {v..} vi11 now Lis di-b-ided by the square root 
normalizing ccnstant a.. Name this normalized fundamental 

of the 
J 

1 
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Each adjoint f-undamental will be checked for linear independence 
against all other adjoint fundamentals. If any adjoint fundamen- 
tal mode fails the linear independence check, and if its primary 
companion passed, both primary and adjoint will be discarded. 
This is necessary in order to retain a uniform sequence when 
setting up generalized mass and generalized stiffness. The 
cosine test will be used to certify linear independence. Iner- 
tial harmonics of adjoint fundamentals will be generated in the 
same manner as those of the primary fundamentals. Once again the 
linear independence of the adjoint harmonics will be checked only 
against its parent and siblings, instead of the currently estab- 
lished set of ALA Ritz modes. 

ORTHOGONALIZATION 

The solution of the differential equations is enhanced if . 

the generalized coordinates used to span the response space are 
orthogonal. Uur set ar linearly independent vectors can be 
orthogonalized. At this point we have a pair of bases vectors 
€e3 and ($3 that are each separately linearly independent. After 
orthogonalizing they will be given the symbols Cc3 and CP3 re- 
spectively. Options f o r  orthogonalization and for associated 
constraint weightlnqs were qiven due consideration. Before 
decidinq on what options to choose, it will help to review the 
ultimate application. 

The dynamic equation in metric coordinates is: 
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Transform the metric coordinates to the primary bases 
vectors as generalized coordinates. Assume that the orthoqonali- 
zation of @ into 5 has already taken place. Let 

At this point the columns only of the coefficient matri- 
ces M, B, and K have been transformed to generalized form. Next 
the rows of the matrices must be transformed. In the symmetric 
case3 this is done by using the transform of the symmetric 
modes. However, in this the unsymmetric case ,  we pre-multiply by 
the transpose of the adjoint bases vectors. Assume that the 
orthoqonalization of $ into JZ has taken place. 

The desire is to decouple the equations as much as possible. To 
start with, we want the generalized mass to be a unity matrix; 
i.e. 

Constraining the generalized mass to unity will affect the nor- 
malization to such an extent that the generalized coordinates 
will have been transformed to final form. Thus, much of the 

2. Lynamics ‘11 Structures, by W. C. Hurt7 ti M. F. Rubinstein, pp 
125, L.rentice Hall, 1964 
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control in obtainina diagonalized dampina and diagonalized stiff- 
ness will have been removed, so it appears that the aeneralized 
stiffness matrix may be coupled. Since [‘\1,1 1 s  a square matrix. 
the requiremznt of equatiori ( 2 3 )  implies that the order o t  the 
adioint vectors a be the Same as the order of the primary vectors 

‘ J  

r ; .  
A. Use Gram-Schmidt method f o r  orthocronalizing the Pri- 

mary Ritz modes and apply the simple constraint of unit diaqcnal- 
izinu with no xeiuhtinq. 

B. But in the case af Adyoint Ritz modes the orthoaonal- 
ized set will be expanded in terms of the complete set cf adioint 
bases with the dual Constraint of equation ( 2 3 )  havinu mass 
weiuhtinq. 

Mathematically these statements trar,slate into buildina 
the normalized -2ectors as follows. 

A .  Self-Orthoaunalizati~n 

To start with, the simple Gram-Schmidt method 5,ets uG a matrix i;f 

urd2ter zined zoeff;:ientz tc inv;.l-;e an incr?asina number- ~ J L  

t _ i j 9 ~  - i?c tc rs  f$ in the  :ontent  6f the outhoaonalizsd vec to r s  5. 
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The self normalizing constraint is written in matrix notation as: 

One can better appreciate the earlier topic of having to decide 
on sequencing during generation of ingredients of the bases in 
light of the character of orthogonalization. If the fundamen- 
tals are sequenced together at first, then the initial orthoqo- 
nalized vectors will contain a minimum of higher harmonics in 
their expansion. We ask, Is this good or bad? If inertia 
effects dominate the dynamic behavior of a structure under 
certain loads, probably sequencing harmonics in earlier might 
help. But in this study the option was taken to group the fun- 
damentals ahead of the harmonics instead of layerlng one fun-  

damental and all of its higher harmonics on top of a second 
fundamental and all of its higher harmonics et cetera. 

Trace the effect of the orthoqonality constraint on 
achieving a solution for the undetermined coefficients. Operate 
on the first two equations of' the set in equation (24). 

single orthogonality constraint of equation ( 2 5 ) .  

m 
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T, 

. The coefficient = ( - )  i%l kt 
11 Substitute from ( 2 6 )  a 

is now expressed entirely in terms of the set af kno-m norm- 
alized bases vectors { @ I .  Substitute a into the equation above 
and now { c 2 }  is known. 

all 
11 

Turn to the third vector. 

conditims ar? imposed between j, and the p r e v i o u s l y  found C ,  and 
f 
C?. 

L 

T T 

ORiGINAL PAGE IS 
OF PO8R QUALtTY 
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Assemble the i constraint conditions in preparation for sub- 
stituting &i+l from equation ( 3 2 )  into them. 

which can be combined into 

Now substitute the expansion in terms of L@j. 

( 3 4 )  

Which can be compressed into 

0 .  

But by introducing partitions into L@J and CaJ it can be 
more intuitively as 

written 
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from which all of the undetermined coefficients ai,a 2,...,a. 
be computed and substituted into equation (32) to evaluate 

can 
1 

For solutions of succeeding vectors i+2, i+3, .... n; the 
T square coefficient matrix CgJiC@Ji increases incrementally in 

order up to n x n, so that results from the previous calculation 
might be considered for saving. Then the increments can be 
merged into the salvaged core to continue on. Details of the 
strategy will be given in the CODING document. 

B. Dual Orthoqonalization 

The dual orthogonalization of the adjoint bases are organized 
into a full matrix of undetermined coefficients for the expansion 
of normalized vectors SZ as components of the raw adjoint bases 9 .  

( 3 7 )  
I I  

bn3.....b' nn J (''in3 
This can be written in more conventional form as 

Note the the b . ' s  in equation ( 3 8 )  are the transpose of the 
b .  ' s  in equation ( 5 7 ) .  Equation ( 3 8 )  can be condensed to 

13 

3 1  
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( 3 9 )  [Sltn] = [14~~] [ppn], in which Cplr is the transpose of' the 
bij's. 

The mass orthogonality constraint, according to the 
transformation requirements of the dynamic differential equation 
( 2 3 1 ,  is a relationship between the normalized adjoint and the 

. Since the M and 5 T normalized primary bases; i.e. 51 M 5 
are known, their transposes can be taken immediately, so it 
becomes better strategy to transpose the constraint equation in 
order to obtain 42 in non-transposed form; i.e. 

Li LL L j =  'ij 

Now substitute from the expansion equation (39) into the mass 
orthogonality constraint equation ( 4 0 ) .  Confine to one index at 
a time. Set i = 1. 

Next Pl This will produce a solution to the first column of f3 
set i = 2 and substitute for  iLLZfrom equation ( 3 9 ) .  

This will produce a solution to the second column of f3. A pat- 
tern is now apparent for solving for the complete content of p in 
a sinqle operation, by recognizing the coefficient 
[cLjlTIMLL] [QLi] is the same in every equation; only the columns 
of unknown p ' s  and the columns of the 6 . .  change. Combine the 

31 
columns into matrices; i.e. 

rn 

Isolate i3 . .  
PI 

334 



RITZ METHOD FOR TRANSIENT RESPONSE 
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS 

Substitute ints the defining equation for normdlized adjcints 
(39). 

All quantities are now derived for qettinq a solition ,2f 

the dynamic differential equation by using Ritz modal -Jectars. 
h e  thinq not taken up how;-er, was the definition of damping sij 
as t a  jive as sparse a generalized damping matrix as pdjssible. 
The other topic that still needs addressing is data recovery. 
These topics will be reserved for an extension to the basizs as 
developed here. Details of convertinq this theory to DMAF codiria 
has been published in a report entitled "RITZ MODES FOEi 

UPJSYMMETRIC MATRICES--DMAF CODING OF THE THEORY" by Thomas B. 
Butler. 

The codinu was done in 3 steps. (1) Fundamental Frimary 
and Adjclint. mo&s xere obtained from a DMAF ALTER to the Statics 
kiqid Fc<rmat. The listinu of this  code is attached as Appendix 
A. i 2 )  HarmGnicz for the Frimar? and Adjoint sets xere csded as 
d +re DMAP a p p k - x c h .  The listina at this code is atta.z',;ed as 

Apsendix  E. ( 3 1  Ot-th~~onallzati,~~n w a s  coded as a p u r e  DMAP 
a r j ~ t - ~ a ~ h .  "lie listing of this .:.:de is atta*:h?d as Appendix (3. 

A simple demclnstratian problem was used to [let-tity t h e  

met hod and th+ :: :ding . It xas t-iln t w i c e  with a different 
tht-irshr1821d ; la lue cf Kappa e~r?t-~:ise a number of d i i f + r e n t  
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paths. Details of %he demonstration problem are given in Appen- 
dix D. Generalized Mass and Generalized Stiffness that were 
produced in the twc. aifferent r u n s  are qiven in Appendix E. One 
run set the linear independence threshhold Kappa to 0.007. Only 

the four fundamentals passed the linear indepsndence test, sa the 
generalized mass and stiffness are only of order 4 x 4. Kappa 
was deliberately set high to a value of 0 . 3 5  in the second run so 

as to admit 5 harmonics in acldition to the four fundamentais. 
Resulting generalized mass and stiffnesses are of order 3 x 3. 

The generalized mass i n  both cases was practica1l:J unity. 
Off diagonal terms were at least 14 orders of maanitude less tkLan 
those on the diaqonal. Marked differences s h o w  up In the  aerier- 
alizeG stiffneses for the t w o  cases. Nhen a mathematically 
louizai Yalue of Kappa 1 s  used as i r i  the . O U I  ;-ase, the terms on 
the diagonal dominate t h e  ,aff -diaaonal terms,  inplying vet-;? weak 
c a u p l i n q  betxeen R i t z  modes. rhrs weak souplinq c ~ u l d  v e r y  ~ 2 1 1  
~ u s t i L - y  the use diaqonal  rn;lti-ic?s and S O  berieiit from a rleczupled 

solution. l a e n  an impr;babl? value of Kappa is used as in th? 
0 .95  case, :lff-diagonhl terms are Large. T h i s  observatim can 
lead to a manageable criterion f a r  cJmcleterisss of the mc;des. 
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The method l a  workabls. DMAP codin? has be3t-i automat;.d 
to such an extent by usinu the devics of bubble vectors.4 that 
it is useable f o r  analys3s in i t s  present form. This ~easihility 
study demonstrates that  the LiLz Method is 5 0  compelling as tc, 
warrant coding its mGdulez in FORTRAN and organizing the result- 
ing coding intr a nex R i ~ i d  Farmat. 

Even though this kitz technique was developed for unsym- 
metric stiffness. matrices, it clffers advantaqes tl> pt-t;blems with 
symmetric stiffnesses. If used for the symmetric case the s o l u -  
tion wculd  be simplified tcg one s e t  of modes, because tt? ddloint 
would be the same as tne primary. Its advantags in eitheL type  

I of symmetry over a classical eiqenvalue modal expansion i s  chat 

information density Fer hitz mode is far richer thari per eiaen- 
value mode; thus far fewer msdEs xould be needed f o r  t he  same 
accuracy and every mode m u l d  actively participats in th? r e -  
sponse. Considerable economy can be realized in adaptin2 R l t z  
vectors far modal solutions. This new H i t z  zapabilitzd now makes 
NASTRAN even more powerful than betore. 
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DMAF CODING FOR 
FRIMARY AND ADJOINT FUNDAMENTALS 

$$ ADVISABLE TO INCLUDE THIS NASTRAN CARD IN JOBS. 
3 

$ NASTRAN MAXFILES = 60, FILES = (INPT,INPl,INP2,1NP3,INP4) 
.j RITZFUND.DMP $ DMAP ALTER FOR GENERATING FUNDAMENTAL RITZ VECTORS $ 

ALTER 2 $ ALTERS FOR 1988 VERSION OF NXSTRAN 
FARAML CONTKI' /*PRESENCE*/ / / /V,N,NOCONTK $ CONTK IS A DWiP INFUT $ 

$$ $ IJOCONTK = -1 IF CONTK IS MISSING 8 
PRTFARM / /O/C,N,NOCONTK $DB 
COND ERROR4,NOCONTK $ ABORTS IF USER OMITS CONTK. 
$$ AFTER GP3 
ALTER 26,26 $ REPLACES PARAM STATEMENT WITH ONE THAT ENABLES MASS GENERATION 
PARAM //*ADD*/NOMGG/l/O $ ALERTS EMG TO GENERATE MGG $ 

ALTER 39 $ AFTER EMA OUTPUTS KGGX FOR STIFFNESS 
ADD CONTK.KGGX/NSKGG/ $ THIS IS THE NUN-SYMMETRIC STIFFNESS. 
ALTER 45 $ AFTER EMA OUTPUTS MGG 
PURGE M".M.FF,MAA:NOMGG $ 

ALTER 61.61 3 DON'T PURGE QG. 
PURGE K R R . R L R . ~ R . D M ~ R E A C T ~ G M ~ M F ~ F l ~ G O , K ~ o , L ~ O , F o , u U U V ~ ~ M I ~ ~ P S ,  

KFS.KSS/SINGLE $ 

ALTER 62,62 $ ADD MGG TO EOUIV 
EQUIV KGG.KNN/MPCFl/MCG,MNN/MPCFl $ 

ALTER 65.69 $ REPLACE MCE2 5( SCEl WITH NON-SYM OPN'S 
'JEC USFT/GNVEC/*GA/*M*/*N* $ 1's ON N 
PARTN KGG,GNVEC, /KMM,KNM,KMN,KNNBAR/-1 $ -1 MEANS THAT GNVEC IS USED 
$$ FOR BOTH ROW AND COL PARTNG, BUT DOES NOT MEAN THAT KGG IS SYMMETRIC 
IIPYAD KNM,GM.KNNBAR/KNNl/O/+l/+l $ 

MPYAD GM,KMN,KNNl/KNNZ/+l/+l/+l $ 
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MPY 3 GM.KMM,KNNZ/KNN/O $ 

MCE2 USET.GM, ,MGG, , /KWASTE,M", , $ 

LABEL LBLZ $ 

EQUIV KNN.KFF/SINGLE/MNN,MFF/SINGLE $ 

COND LBL3, SINGLE $ 

VEC USET/NFVEC/*N*/*F*/*S* $ 1's ON S 
PARTN KNN,NFVEC. /KFF,KSF,KFS.KSS/-1 $ 

SCEl USET. ,M", , / , , ,MFF. , $ 

ALTER 71,71 $ ADD MFF TO EQUIV 
EQUIV KFF,KAA/OMIT:MFF,MAA/OMIT $ 

ALTER 7 3 , 8 2  $ REPLACE SMPl.RBMGl.RBMGZ.RBMG3 WITH UNSYM OPN'S 
VEC 
PAIiTN KFF,FAVEC. /KAAEAR.KOA.KAO,KOO/-l j 
DECOMP KOO/KOL,KOU/O/O/S.B.KOMIN:S.N,KODEr/S.N./S,N,D~~IN~ $ UIJSIM 
$ $  DECOMF OF KO0 
FBS KOL,KOU,KOA/GO/O/-1 $ 

MPYAD KAO,GO,KhilBAR/KAAiO,'+11+1 $ 

SMP2 USET,GO .MFF/MRA S 

LABEL LBL5 $ 

EQUIV KAA,KLL:REACT/MAA.MLL/RmCT $ 

COND LBL6.REACT $ 

VEC USET/ALVEC/ *A*/  *L*/ *R* $ 

FARTN KAA,ALVEC. /KLL.KRL,KLH.KRR/-1 3 
RBMGl USET. .M/ , , ,MLL,MLH.MRR $ 

LABEL LBL6 $ 

OUTPUT1, ,,,,/ /-1/4 $ SET THE DEFAULT LABEL 

USET / FAVEC / *FA / *A* / * 0 * $ 

OUTPUT1 
DECOMP 
COND 
FBS 
MPYAD 
DECOMP 

MLL.KLL., ,/ / O  / 4  $ FOR ORTHOGONALIZATION AND FINAL CHECK 
KLL/LLL,ULL/O/O/S.N,KLMIN/S.N.KLDFT/S.N,KLP~/S,N,KLSING $ 

LBL7,REACT $ 

LLL,ULL.KLR/DM/O/-1 $ 

KRL.DM,KRR/X/O/+l/+l $ 

X / X C , X U / O / O / S , N , X M I N / S , N , ~ E T / S . N . X P W R / S  $ 
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DECOMP K R R / K R L L , K R U U / O / O / S , N , K R M I N / S , N , K R P E T /  S,N,KRFWR/S,N.KRSTNG $ 

PARAMR //C,N,DIV/ / / /V,N.REEFS/V,N,-XllET/V.N.KRDET $ 

PRTFARM //O/C,N,RBEPS $$ RIGID BODY TRANSFORMATION CHECK 
LABEL LBL7 $ 

$$USER INPUT = CONTK, A matrix of control properties of the same order as KLL. 
I;$ = SCVEC, A vsctor of a leading 1 followed by zeroes of order equal to 
$$ the number of loading subcases. 
$; = SCADJ, A vector of leading zeroes followed by a trailinq 1 of order 
$; equal tu the numbzr of loadinu :~~h i :c isCS.  

$ 3  = KAFI’X, A real  d ~ u b l e  ptecisiari pat-amet.er for ssttinq the tolerance of 
8 $  Lhe cosine linedr independence check. 
$3 = MODSPEC, A parameter for settinq the inteuer maximum of harmonics 
$9  to be uenerated. 
$ 3  = LONGONE, A Vector of ones whose lenuth is greater than txice the 
$$ number of subcas2s times MODSPEC plus one. L= 2(SC)(1 + MOCSFEC) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FBS LLL.uLL.rm/SoLP $ INERTIA COEFFICIENT FOR HARMONIC RITZ F VECTORS 
$$ PER EQUATION (15) 
$ INTRODUCE THE SOL” OF THE TRANSPOSE OF ELL TO DEVELOP INVERSE VECTORS 
TRNSP KLL/KLLT/ $ 

DECOMP KLLT/TLLL.TULL/O/O $ 

FBS TLLL.TULL.MLL;SOLA $ INERTIA COEFFICIENT FOR HARMONIC RITZ A VECTCiHS 
$$ FER EQUATION ( 1 5 )  
........................................... 

ALTER 88.92 $ REPLACE SSG3 WITH NON SYM OPN’S 
FB3 LLL,ULL,PL/ULV/ 8 
FBS TLLL,TULL, PL /TULV/ $FAY THE PRICE OF DOING FBS ON INVERSE TOO 
COND NOUOOV,OMIT $ 

FBS KOL,KOU.PO/UOOV/ !$ 
LABEL NOUOOV $ 
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$ 

$$  CALCULATION OF RULV LN CONNECTION WITH IRES WILL BE IGNORED BECUZ IT WOULD 

$$ BE ADVISABLE TO DO THIS CHECKING WITH SYMMETRIC MATRICES. 
$ ======  ) USER SHOULD ESCHEW USE OF IRES < = = = = = = =  

$ THE EPSILON SUB E CHECK WILL BE DONE IN DBL PREC BECUZ PARAMD IS NOW AVAILXELE 
$ 

MFYAD 
MPYAD 
MPYAD 
SCALAR 
SCALAR 
PARAMD 
FRTPARM 
PARAM 
$$ 

COFY 

ADD 
F;IP,.MIL 
PARXML 
FARAM 
COND 
JUMP 
FILE 
LABEL 
COND 
COFY 
EQUIV 
JUMP 
LABEL 
COPY 
EOUIV 
LAEEL 

KLL,ULV,PL/DELPL/O/-l/+l $ 

ULV,DELPL. /DELWORK/+l/+l $ 

PL,ULV, /ALLWORK/+l/+l $ 

DELWORKI /1/1/ /V,N.EPSNUM $ 

ALLWORK/ 11/11 /V,N.EFSDEN $ 

/ /*DIV*/V,N.EPSUBE/V.N,EFSNUM/V,N,EPSDEN $ 

//O/C,N.EPSUBE $ $  RIGID BODY TRANSFORMATION CHECK 
/ /*ADD*/V.N,hljJCYC/+l~~ $ VALUE OF FARAM REtWICJS F9SLTIVE DURING 

PROCESSING OF F'RIMAHIES. 
LONGONE;CLONONE/ 0 $ 

LONGONE,iLONONE:LUNGNULL:(-1.0,0.0) 3 
XVEC! :*TRAILERs/~iV,N,VEChO 3 ROW SIZE IS READ FROM SCrJEC 
ULV/ /*TRAILER+!l;V,N,ZCOL $ COL SIZE IS READ FROM ULV 
1 ;*EO*/V.N.LODNO;V.N,VECRO/V.N.CCOL $ LODNO IS NEGATIVE IF VECRO=ZCOL 
ADJLUF.LODN0 $ CONTINUE IF SCVEC AND ULV AGREE 
ERROR4 $ ABORT fF 3CVEC AND ULV DON'T AGREE 
FALCCLI= SAVE/FALRHLI= SAVE $ 

ADJLUF $ TOP OF LOOF PRIOR TO FORMATION OF EITHER PRlM OR ADJ FUND 
ADJTRN.ADJCYC $ ADJCYC INITIALLY IS POS TO GIVE PRIORITY TO P R I M P  
ULV/FLV/ 0 $ FLV WILL REMAIN AN INTERNAL DATA BLOCK TO THIS FTJND LOUP 
ULV.CL0NFLV $ CLONFLV IS INTERNAL. EQUIV WILL BE BROKEN AT TOP'O LOOF 
PRIMSEG $ GO AROUND THE AJOINT PREP 
ADJTRN $ 

TULV/FLV/ 0 $ FLV IS INTERNAL 
TULV,CLONFLV $ CLONFLV IS INTERNAL 
FRIMSEG $ 
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MFYAD CLONFLV,FLV. /FLSQ/+l $ 

DIAGONAL FLSQ/SCALF/*DIAGONAL*/C,N,-0.5 $ 

MFYAD 
COFY 
MPYAD 
MATPRN 
COPY 
COF'Z 
COFY 
ADD 
COF'Z 
FARAM 

LABEL 
FARAM , 

PARTN 
FARAM 
PARAM 
LABEL 
PARAM 
SCALAR 
PARAMD 
PARAMD 
PARTN 
MERGE 
COND 
JTJMP 
LABEL 
FARAM 
$$ 

FRTFARM 
FRTFARM 
ADD 

FLV,SCALF, IFMOD/ 0 $ CANDIDATE MODE NORMALIZED TO EUCLID LGTH. 
FMOD/FCLON/ 0 $ 

FCLON,FMOD, /FDOT/+l $ MATRIX ORDERS = ZCOL. 
FDOT,,,,// $DB 
SCVEC/SCVECI/ 0 $ ROW EUBBT.E STARTING FkOM HEAD 
SCVEC/LIVECI/ 0 $ COL BUBBLE STARTING FROM HEAD 

SCVEC/MODPARTN/ 0 $ DUMMY TO BE USED FOR SWITCHING WITHIN LOOFS 
LI~~ECI,SCVEC;FhLCCLI/ /(-l.O.O.O) $ NULL BUT SAME LENGTH AS SCVEC 
FALCCLI:FALRRLI/ -1 $ NULL SAME LGTH AS SCVEC 
t' /*MFY*:V,N.ROCNT/ 1 / 0 $ RESET ROW COUNT TO 0 BEFORE LI CHECK 
LIRLUF $ TOP OF HOW PORTION OF LINEAR lNDEFENDENCE LOOF 
I( /*MPY*iV,N,NORFAL/+1/-1 $ SET DEFAULT TO NEG TO JUMP OVER FAIL BOOK 
FDOT. .SCVECI/ , H O C A I ,  , / + 7 / + 2  $ 

/ /AADD*/V,N,ROCNT/V.N.ROCMT/  1 $ ROW COUNT MONITOR INCREMENTED BY OfJE 
/ /*MFY*/V.N,CLCNT/ 1 /V.N.ROCNT $SET COL COUNT=ROW COUNT PRIUR LI: CHK 
LICLUF $ TOP OF COLUMN PORTION OF LINEAR INDEFENDENCE LOOP 
/ /*ADD*/V,N,CLCNT/V,N,CLCNT,' 1 $ COL COUNT MONITOR INCREMENTED BY ONE 
ROCAI/ :l/V.N,CLCNT/ /V.N,RCF $ COSINE TERM TO BE TESTED 
/ / *ABS*/V,N.COSRCF/V,N.RCF $GETS ABSOLUTE VALU OF COS (ROW.COL) TERM 
//*LE*/ /V.Y.KAPFA/V.N,COSLCF/ ; / /V.N.LICHK SLICHK =-1 IF KAPFA i COSRC! 
LIVECI. .SCADJ/CDUM, , . / + 7 ; + 1  $ HAVE BUBL VEC TO TRACK.THIM TRAIL SERi 
CDUM. , , , .SCVEC/LIVECJ/+7i+l $BUBBLE INCREMENTED AWAY FROM HEAD 

FALBOOK.LICHK $ CATALOG FAILURE POSITION 
MORCLI $ SKIP AROUND CATALOGING IF TEST WAS SUCCESSFUL 
FALBOOK $ 

/ /*MPY*/V,N,NORFAL/V.N,LICHK/ -1 $ SFTS SIGNAL ONLY WHEN A COL FAILS. 
HAS OPPOSITE SIGN TO LICHK. POSSIBLE REPEATS ARE O . K .  

/ /O/C,N,ROCNT $ ROW # OF CANDIDATE WHICH FAILED LI TEST 
/ /O/C,N,CLCNT $ COL # OF CANDIDATE WHICH FAILED LI TEST 
FXLCCLI,LIVECJ/FALCCLJ/ $ ACCUM OF COL POS'NS OF FAILURES 
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SWITCH 
LABEL 
SNITCH 
FARAM 
COND 
REFT 
8 
LABEL 

9 
COND 
ADD 
SWITCH 
LAEEL 
FARAM 
PARAM 
COND 
JUMP 
LXEEL 
PARAML 
PARAML 
PARAM 

$ $  
FRTFARM 
COND 
SWITCH 
JUMP 
LABEL 
SWITCH 
LABEL 
PARTN 
PARTN 
$$ 
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FALCCL1,FALCCLJ: / V,N,LICHK $ 

MORCLI $ CONTINUE L1 TESTING iN THIS ROCd FJEN AFTER A COL FAILS 
LIVECI,LIVECJ/ / -I $i 

/ /*EQ*/V.N.LICDUN/V.N.CLCNT/V,N,'ZCOL $ LICDUN = -1 IF CLCNT = ZCOL 
NUROW.LICDUN $ JUMP OUTSIDE OF COL LOOP IF Ca LAST COL 
LICLUP,399 $$$$$$$$$$$ END OF COLUMN LOOP 

NUROW $ 

GUDR0,NORFAL $ JUMP 1F NO COLS IN CURRENT ROW HAD A LI FA JRE 
FALRRLI, SCVECI/FALRRLJ/ $ ACCUMULATED ROW POSN'S OF FAILED ROWS 
FALRRLI,FALRRLJ/ / -1 $ SWlTCH ONLY IF THIS ROW FAILED,ELSE STAYS 
GUDRO $ 

/ /*SUB*/V.N.ROTEST/V,N,ZCOL/l $ DECREMENT CCOL BY ONE FOR ROTEST 
t' /*EQ*/V,N.LIRDUN/V,N.ROCNT/V,N,ROTEST $ LIRDUN = -1.IF ROCNT=ROTEST 
KLENUP , L IRDUN $ 

MOROW $ GO AROUND CLEAN UP IF MORE RONS REMAIN TO BE TESTED 
KLENUP $ 

FALCCLI/ /+TRkILER+/C,N,G/V,N,FALCDENS $ DEPJSIT'L 9F 'THE COL FAIL VEC 

FXLRRLIi ;*TRAILER~/C.N,6/V,N,FAL~D~S $ DENSITY OF THE ROW FAIL VEC 
/ ;*LE*/V,N.DENSLK/V.N,FALCllENS;V.N,FALRDENS $ IF COL DENS : / =  ROW DEN. 

DENSITY SELECTION PARAMETER IS NEGATI'JE 
1 t'C,N.O/C,N.DENSLK $DB 
OTHER .DENSLK $ SWITCH MOUPARTN 'TO THE VECTOR El LWR DENSITY 
FALRRLI.MODPARTN/ 1-1 $ 

MODSET $ 

OTHER $ 

FALCCLI,MODPARTN/ 1-1 $ 

MODSET $ 

FMOD,MODPARTN, /PHI, , , /+7/+2 $SURVIVORS OF LI TEST 
SCALF, ,MODPARTN/PFVEC,.,/+7/+1 $ CLUSTER VECTOR FOR MERGING FUND- 

AMENTAL MODES WITH HARMONICS 
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MERGE PFVEC,.,,.LONGNULL/HEADPF/+7/+1 $PUT PFVEC AT THE HEAD OF A LONG VEC 
PARTN LONGONE, ,HEADFF/SHORTONE.,,/+7/+1 $ PARTITION LONGONE DOCJN BI 
PERMANENT 
MERGE SHORTONE,,,,,LONGNULL/HEDSHORT/+7/+1 $APPEND PERMANENT-SIZE NULL TC 
TAIL 
ADD HEDSHORT,LONGONE/NEGTAL~~l.O,O.O)/(-l.O,O.O~ GFERMANENT-SIZE NEG @ TAII 
$ 

$ PROVIDE FOR THE POSSIBILITY OF THE CULLING VECTOR CONTATNINC 1’s IN THE END 

$ FOSITIONS, WHICH WOULD DESTROY THE FUNCTION OF THE SHIFTING VECTORS. COWERT 
$ SCALF 
$ 

MERGE 
TRN3P 
MF ‘[AD 

D I AGONAL 
FBRTN 
FMOD 
MERGE 
MERGE 
ADD 
FUNPART 
$ 

COND 
$ 

COPY 
ADD 
PARTN 
PmTN 
JUMP 
LABEL 
COPY 

TO ALL ONES. 

SCALF,,,,.SC~J:COLSCAL:+7/+2/+/+2 8 SETS TRAILER TO RECTANGULAR 
COLSCAL:SCXLFRO $ cOrmm COL ‘ro ROW 
COLSCAL.SCXLFR0, /SQUID/O $SOUME M T X  OF READ D.F. IN FREF FOR DIAG 
SOUID/FULU/~COLUMN*/O.O SFULU IS A CLUSTER OF ALL 1’3. LGTH=FMOD 
FULU,.MODPXRTN/FUNFAT,TOSS,,:+7/+L/+2/+2 SLGTH lST=PHI,TOSS=COMF NR: 

FUNFART..,,,FULU/HEDCLUS/+7/+1 $FORM CLUSTER OF FUNPART @ VEC HEAD 
TOSS..,,.FULU/HEDTOSS/+7/+1/+2 $FORM CLUSTER OF TOSS @ VEC H E W  
FULU.HEDTOSS/TALCLUS/(l.O,~.O)/(-l.~,O.O~ $ 

ADJWRAP,ADJCYC $ 

PHI/PHIPI/ 0 $ 

NEGTAL. /LONGPRMI/(-1.0.0.0) $ TAIL CLUSTER = 

SCVEC, ,HEDCLUS/.HMHED,,/+7/+1 $ HEAD SHIFTER 
SCADJ, ,TALCLUS/,HMTAL,,/+7/+1 $ TAIL SHIFTER 
ADJKUNT $ 

ADJWRAP $ 

PHI/PHIAI/ 0 $ 

CAP ZEROES d HEAD Oi: 

PERMANENT PRIMARY MODES 
TRIMMED TO LGTH = FHIPI: 
TRIMMED TO LGTH = PHIPI 

ADD NEGTAL, /LONGMMI;(-1.0,0.0) $ TAIL CLUSTER = PERMANENT ADJOINT MODES 
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FARTN 
PARTN 
$ 
JUMP 
3 
LABEL 
FARAM 
FARTN 
MERGE 
SWITCH 

1 COPY 
$ 

REFT 
$ 
LABEL 
FARAM 
$ 

REFT 
$ 

LABEL 
4 
3 
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SCVEC, ,HEDCLUS/.ADJHED,,/+7/+1 $ SHIF'IER ThlMMED TO LCTH = PHIAL 
SCADJ, ,HEDCLUS/,ADJTAL,,/+~/~~ $ SHIFTER TRIMMED To LGTH = PHIAI 

HARMONY $ 

MOROW $ 

/ /*MPY*/V.N,CLCNT/l/O $ RESET COLUMN COUNT TO ZERO 
SCVECI, ,SCADJ/RDUM. , , /+'1/+1 $ TRIM TRAILING ZERO 
RDUM, , , , ,SCVEC/SCVECJ/+7/+1 $ BUBBLE INCREMENTED AWAY FROM HEAD 
SCVECI,SCVECJ/ / -1 $ 

SCVECI/LIVECI/ 0 $ COL BUBBLE I f J D E i  ALIGNED WITH RON TRACKER 

LIRLUP.999 $ 

ADJKUNT $ 

/ / *MPY* I V ,  CJ ,ADJCYC/ 1 / - 1 $ 

XDJLUF.333 $ 

HARMONY $ 

OUTFUTl, , , , , II / - l ; U  3 CALLS THE DEF'XCfLT LABEL. NEEDED FOR REWIXDS LATER. 
OUTFUTl PHIPI,FH1AI:.SOLP,SOLA, )I /O:O $jMfkVY CALLS TO BE MADE IN HARMONIC FHASE 
OUTFUT1, ,,,,/ / - l / l  $ SETS 'THE DEFAULT LAbEL 
O U T P U T 1  HMHED,HMTAL,ADJHD,ADJTAL, / /0/1 $ 

1 OUTFUT1, ,,,,/ / - 1 / 2  $ SETS THE DEFAULT LABEL 
OUTFUTl LONGNULL,LONGPRMI,LONGARMI,LONGONE, / /0/2 $ 

s 
ALTER 154.154 $ REMOVE OPTIMIZATION LOOP TO PREVENT O'FLOW OF CEITBL 
$ 
ENDALTER $ END OF ALTER FOR RITZ FUNDAMENTAL MODES 
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RITZ METHOD FOR TRANSIENT RESPONSE 
IN SYSTEMS HAVING UNSYMMETRIC STIFFNESS 

DMAP CODING FOR 
PRIMARY AND ADJOIrJT HARMONICS 

XFP DMAP $ FOR EXECUTION AFTER RITZFUND. INPUTS FROM INPT.INFl.INP2 
BEGIN $ PROGRAMMED FOR 1988 VERSION OF NASTRAN. OUTPUT TO INP3 
FILE LONGPRMI=SAVE/LONGARMI=SAVE/FGENI=SAVE/A/FULU=SA~E $ 

FILE PHHED=SAVE/PHTAL=SAVE/A"ED=SAVE/A"ED=SA~/AHTAL=SAVE $ 

FARAM / /*MFY*/V,N.FRIMCYC/+l/-1 $ CONTROL PARAM FOR PRIMARY 1ST HhRPlONIC 
PARAM / /*ADD*/V,N,ADJCYC/+l/ 0 $ CONTROL PARAM FOR ADJUNCT 1ST HARMONIC 
PARAM / /*ADD*/V,N,NUPGEN/+l/ 0 $ CONTROL PARAM FOR PRIMARY HIGHER HARMONICS 
FARAM /*ADD+/V,N,NUAGEN/+l/ 0 $ CONTROL PARAM FOR ADJUNCT HIGHER HARMONICS 
FARAM 1 /*MPY*/V,N,HARiWO/ 11 0 3 SET THE HARMONIC COUNTER TO ZERO. 
$ 
LABEL HMNICGEN $. TOP OF LOOP FOR HARMONIC GENERATION %%%%%%%%%%k%% 
$ 

PARAM ,' ,' 4ADD* / V  , t J ,  HARMNO / V I  N , HARMNO / 1 $ IMCREMENT THE HAR[IONIC COUNT EY ONE 

C 0 ND PRIMPREP .PRIHC'ZC $ 

COND ADJFREP ,ADJC'ZC $ 

COND FHMCJPREP , NVPGEN $. 

COND MMNFREP , NUAGEN S 

LABEL FRIMFREP $ 

INFUTTl II. , , , ; - l / O  $ 

INPUTT1 /HLV..,, /O/O $ READ PHIPI INTO HLV 
COPY HLV/PHIPI/ 0 $ THIS IS THE ROOT FOR THE 1ST MERGE OF HARMONICS TO PRIMJ 
EQUIV HLV,TESTER/PRIMCYC $ HLV AND TESTER ARE INTERNAL NAMES OF GENERATOR. 
$$ LATER ON, EQUIV WILL BE BROKEN AT TOP'O LOOP. 
INPUTTl IKMMTX,,,, 1110 $ SKIP PASSED 2ND DB AND READ SOLP INTO KMMTX 
INPUTTl / ,  , , , 1-111 $ 

INPUTTl /HEDVECI,TALVECI,,, 1 0 1 1  $READ HMHED INTO HEDVECI & HMTAL INTO TALC'ECI 
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INPUTT1 
INPUTTl 
COPY 
ADD 
JUMP 
LABEL 
INPUTTl 
INPUTT1 
COPY 
EOUIV 
INPUTTl 
INPUTTl 
IPJFUTTl 
INFSITT 1 
INFUTTl 
COFY 
JUMP 
LABEL 
COPY 
EOUIV 
INPUTTl 
INPUTTl 
EQUIV 
JUMP 
LABEL 

COPY 
EQUIV 
I NPUTT 1 
1 ripum 1 
EOUIV 
LAEEL 

1 ,  , , , 1-111 3 
/PGENI,PHTAL,,,/O/l $READ HMHED INTO PCEN1;READ HMTAL INTO FHTAL. 
PGENIiPHHEDl 0 $ DUMMY STATEMENT TO FOOL THE COMPILER 
HEDVECI,TALVECI/FULU $ FLUFF TO HELP FIAT LOCATE THE REAL FULU 
HMYBUS $ GO AROUND THE AJOINT FREP 
ADJPREP $ 

I,,,,/-l/O $ REWIND FROM PREVIOUS PASS THRU LOOP AND POSITION @ 1ST DB 
lHLV,,,, Ill0 $SKIP PASSED 1ST DB AND READ PHIAI INTO HLV 
HLVlPHIAIlO $THIS IS THE ROOT FOR THE 1ST MERGE OF HARMONICS TO ADJOIN: 
HLV,TESTER/ADJCYC $ HLV & TESTER ARE INTERNAL NAMES OF GENERATOR 
IKMMTX,,,, 1110 $ SKIP PASSJZD 3RD DB AND READ 3ULA INTO KFIMTX 
/ *  , , * /-l?l $ 

/HEDVECI,TALCTECI,,,/2/1 SRERD ADJHED INTO HEDVECI & ADJTAL INTO TALVEC, 
1 ,  , , , / - l / l  $ 

/AGENI,tWTAL,r,/2/1 $SKIP LDB & READ ADJHED ). AGENIiREAD ADJTXL >PHTXL. 
AGENI /AHHED/ L7 , N .ADJCYC $ 

HMYBUS $ 

FHMNPREP $ 

PGENI/HLV/ 0 $ 

PGENI,TESTER/NUPCEN $ TESTER IS INTERNAL NAME OF GENERATOR 
/,,,, / - L / O  $ REWIND FROM PREVIOUS PASS THRU LOOP AND POSITION 0 IST DI 
/KMMTX,,., 1210 $ SKIP PASSED 1ST 2 DB'S AND READ SOLP INTO KMMTX 
PHHED,HEDVECI/NUPGEN/PHTAL.TALVECI/NUPGEN $ 

HMYBUS $ 
AHMNPREP $ 

AGENIlHLVl 0 $ 

AGEN1,TESTEFtlNUAGEN $ TESTER IS INTERNAL NAME OF GENERATOR 
1,,,, 1-110 $ REWIND F R O M  PREVIOUS PASS THRU LOOP AND POSITION @ 1ST DL 
/KMMTX,,,, /3/0 $ SKIP PASSED 1ST 3 DB'S AND READ SOLA INTO KMMTX 
A"ED.HEDVECI/NUAGENlAHTAL.TALVECIlNUAGEN $ 

HMYBUS $ 
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PARAM / /*MPY*/V,N,INITIAL:+l/-1 $ NEWLY GENERATED CANDIDATE GOING TO 
$$ INITIAL TEST. SET TO -1. 
MFPAD KMMTX,HLV, /UHC/O/1/0/2 $ CANDIDATES OF THE INERTIAL RESPONSES 
PURGE KMMTX $ 

COFY UHC/CLONUHC/ 0 $ 

MPYAD CLONUHC,UHC, /UHCSQ/ +1/+1/0/2 $ 

DIAGONAL UHCSQ/SCALH/*DIAGONAL*/-0.5 $ VECTOR OF EUCLIDEAN LENGTHS. 
MPI'AD UHC,SCAI,H, /PHIHC/0/1/0/2 $ MATRIX OF CANDIDATE FIRST HARMONIC MODES. 
COPY FHIHC/CANDIDAT/ 0 $ USE GENERALIZED LOOP NAMES 
$$ 

FARAM / /*MFY*/V,N,RFALNO/l/-1 $ SET DEFAULT TO NEGATIVE. 
;$ 
MFYAD CANDIDAT-TESTER, /C'JST: + l / ! - l : O / 2  $ HARHONICS AGAINST THE GENERATURS. 
MATPRN CVST, , , , ,' / $ 

COND RECT0,INITIAL 8 SUBSTITUTE A HEDUCD FULU IF REMNANT < GENERATOR 
DIAGONAL CVST/FULU/+COLUMN*/O.O $ALL ONE VEC FOR HARM VS H A R M  (CVST IS SQUARE) 

LABEL LIPREP $ TOP OF LOOF FOR LIIJFRR INDEFENDENCE CHECKING %%%%&%%%%%%%% 

LABEL 
EQUIV 
EQUIV 
COPY 
ADD 
COPY 
PARAM 
PARAM 
PARAML 
COND 
PARAM 
LABEL 
PARAML 
$ 

LAEEL 

RECTO $ 

HL'J,TESTER/MODEFEC QBREAK EQUIV W TESTER 
FGENI.TESTER/MODSFEC/AGENI,TER/MODSPEC $BREAK EQUIV W TESTER 
HEDVECI/HMROWI/ 0 $ ROW BUBBLE STARTING FROM HEAD 
HMROWI,HEDVECI/FALHRI/ / ( - l . O , O . O )  $ NULL. SAME LENGTH AS HED'JECI 
FALHRI/FALHCI/ 0 $ NULL. SAME LENGTH AS HEDVECI 
/ /*MPY*/V,N,CLKNT/ L /  0 $ RESET COL COUNT TO 0 BEFORE LI CHECK 
/ /*MF'Y*/V,N,ROKNT/ 1/ 0 $ RESET ROW COUNT TO 0 BEFORE LI CHECK 
CVST//*TRAILER*/2/V,N,HROW $ ROWS IN CVST 
RECTT,INITIAL $ JUMP IF ON RECTANGULAR CYCLE 
/ /*SUB*/V,N,HROW/V,N,HROW/l $ REDUCE ROW TEST VALUE 1 FOR TRIANGLE 
RECTT $ 

CVST//*TRAILER*/l/V,N,HCOL $ COLS IN CVST 

HLIRLUP $ TOP OF ROW PORTION OF LINEAR INDEPENDENCE CHECK %%%%%%%%%%% 

348 
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9 
COPY HEDVECI/HMCOLI/ 0 $ COL BUBBLE STARTING FROM HEAD 
PAR?” CVST, ,HMROWI/ ,ROCH, , / + 7 / + 2  8 
PARAM / /*ADD*/V,N,ROKNT/V,N,ROKNT/ 1 $ ROW COUNT MONITOR INCREMENTED BY ONE 
COND RECT1,INITIAL $ 

FARAM / /*MPY*/V,N,CLKNT/l/V,N,ROKNT $ SET COL COUNT=ROW COUNT IF TRIANtiLE 
LXEEL RECTl $ 

3 
LABEL HLICLUP $ TOP OF COLUMN PORTION OF LI LOOF . . . . . . . . . . . . . . . . . . . . . . . . . .  

3 
FAR AM 1 /*ADD*/V,N.CLKNT/V.N,CLKNT: 1 $ INCREMENT THE COLUMN COUNT 
3CALAR ROCHI /l/V,N,CLKNT/ /V,N,RCH $ RCH IS DEL PREC FETCH OF COSINE 
$ $  TERM IN ROW FOSITION INDEXED BY THE CONSTANT PARAMETER ‘1‘ AND IN THE COL 
$$ POSITION INDEXED BY THE ‘JARIABLE PAFtArI1ETER CLKNT. 
PARAMD / /*ABS*/V,N,COSRCH/V,N,RCH $ GETS ABS. L’AL. OF COS(ROW,COL) TERM 
FARAMD / /*LE*/ /V,Y,KAPPA/V,N.COSRCH/ 1 / /V,N,CIHZK $ 

COND CATALOG,LIHZK .j GO TO CATALOGING IF LIHZK IS NEGATIVE 
JUMP MORHCOL $ JUMF TO MORE COL PROCESSING IF TEST FASSED 
LABEL CATALOG $ 

COND RECT2,INITIAL $ 

PARAM / /*MPY*/V,N,RFALNO/V,N,LLHZK/  -1 9 SETS SIGPJAL ONLZ “EN A CUL F A I L S .  

$3 RFALNO TAKES ON OPPOSITE SIGN TO LIHZK. REFEATS ARE OK. 
LABEL RECTZ $ 

PRTFARM / /O/C,N,ROKNT $ ROW # OF CANDIDATE TERM WHfCH FAILED LI TEST 
PRTPARM / /O/C,N,CLKNT $ COL # OF CANDIDATE TERM WHICH FAILED LI TEST 
COND RECT3,INITIAL $ 

ADD FALHCI,HMCOLI/FAI;HCJ/ $ ACCUMULATION Of COL POS’NS OF FAITAJkES 
SWITCH FALHCI,FALHCJ/ /V,N,LIHZK $ 

$ 
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LAEEL 
$ 

PARAM 

COND 

FARTN 
MERGE 
SWITCH 
REFT 
$ 

LABEL 
$ 
COND 
LAEEL 
ADD 

SWITCH 
COND 
FARAM 
LABEL 
$ 
LABEL 
$ 

PARAM 
C 0 ND 
PARAM 
FARTN 
MERGE 
SWITCH 
$ 

REPT 
$ 

MORHCOL $ CONTINUE LI TESTING Iri THIS HOW EVEN AFTER A COL FAILS 

1 /*EQA/V,N,LICDON/V,N,CLKNT/V,N,HCOL $ LICDON = -I IF CLKNT = HCOL 
GNROW,LICDON $ JUMP OUTSIDE OF COL LOOP IF (3 LAST COL. 
HMCOLI, ,TALVECI/DUMMY,,,/+7/+1 $ TRIM TRAILING ZERO 
DUMMY, , , , ,HEDVECI/HMCOLJ/+7/+1 $ BUBBLE INCREMENTED AWAY FROM HEAD 
HMCOLI,HMCOLJ/ / -1 $ 

HLICLUP,999 $ $$$$$$$$$$$$$$$ END OF COLUMN LOOP 

GNROW $ CONSIDER TESTING ANOTHER ROW 

GODR0,RFALNO $ JUMP IF NO COLS IN CURRENT ROW HAD A LI FAILURE 
RECT3 $ CATALOG RON FAILURE 
FALHRI, HMROWI/FALHRJ/ $ ACCUMULATED ROW FOS‘NS UF FAILED ROWS 

FALHRLFALHRJI -1 SWITCH u r w  IF THIS ROW FAILED, ELSE STAYS 
RECT4, INITIAL $ BYFASS IF ON RECTANGULAR ROUTE 
/ /*MPY*/V,N,RFALNO/V,N,RFALNO/-l $ RESET TO NEGATL’JE. 
RECT4 8 

GODRO $ 

1 / * E ~ * / V , N , L I R D O N / V . N , h O K N T : V , N , H R O W  $ LIHDON = -1 IF ROKNT = HROW 
CLENUP,LIRDON $ JUMP OUT OF LI CHECKING IF MTX IS COMPLETELY ELWINED 
/ /*MPY*/V,N,CLKNT/l/O $ RESET COLUMN COUNT TO ZERO 
HMROWI, ,TALVECI/DUMMY,,,/+7/+1 $ TRIM TRAILING ZERO 
DUMMY,,,,,HEDVECI/HMROWJ/+7/+1 $BUBBLE INCREMENTD AWAY FROM HEAD 
HMRONI,HMROWJ/ 1-1 $ 

0,o 0 0 0 0 0 I> 0 f HLIRLUP,999 $ END OF ROW PORTION OF LINEAR INDEPENDENCE LOOP e 4 4  44 4 4 4  4 
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LAEEL 
$ 
COND 
PARAML 
FXRAML 

FARAM 
$$ 
COND 
LABEL 
COFY 
JUMP 
LABEL 
COFY 
LABEL 
FARAML 
PRTPARM 
PARAM 
COND 
JUMP 
LABEL 
PARAM 
PASSED 
PRTPARM 
COND 
INPUTT1 
INFUTTl 
INPUTT1 
INPUTTl 
JTJMP 

RITZ MODES FOR UNSYMMETRIC MATRICES 
DMAP CODING OF THE THEORY 

CLENUP $ 

RECT5,INITIAL $ 

FALHCII /*TRAILER*/C,N,G/V,N,DENSFALC $ DENSITY OF THE COL FAIL VEC 
FALHRII /*TRAILER*/C,N,6/VVN,DENSFALR $ DENSITY OF THE ROW FAXL VEC 
/ /*LE*/V,N,SLKDENS /V,N,DENSFALC/V,N,DENSFALR $ IF COL DENS 
< / =  ROW DENS, THE DENSITY SELECTION PARAMETER IS NEGATIVE. 
UTHER,SLKDENS $SET MODEPAHT TU THE VECTOR WITH LWR DENSITY 
RECT5 $ 

FALHRIIMODEFART! 0 $ 

MODESET $ 

UTHER $ 

FALHCIt'MODEFART: 0 $ 

MODESET $ 

MODEFARTI /*TRAILER*/C,N,6 /V,N,MODENSY $ DENSITY OF MODEFART 
/ /O/C,N,MODENSY $ 

/ /*GE*/V,N,FILLED/V,N,MODENSY/10000 $ FILLED=-l IF MODEFART IS FULL 
FOLD,FILLED $ 

FLEDGE $ 

FOLD $ SAVE AND GO 
/ /*GT*/V,N,SUMHUM/V,N,HARMNO/2 $ SUMHUM=-l IF 1ST HARMS OF F & - 

/ /O/C,N,SUMHUM $ 

ORTHOG,SUMHUM $ IF 1ST HARMS FAIL RESTORE ORIGINAL NAMES TO OUTFrfl 
1 ,  I , I / - 1 / o  $ 

/PHIPI,PHIAI,,,/O/O $ FUNDS W/O HARMONICS 
1 ,  p , , 1-111 $ 

/HEADPHI,TAILPHI,p,/O/l $TRACKERS W/O HMPJIC.HMHED=HEADPHI.HMTAL=TAILPHi 
NOB'IZNEZ $ COPY O U T  AS THEY CAME IN 

35 1 



RITZ MODES FOR UNSYMMETRIC MATRICES 
DMAP CODING OF THE THEORY 

LAEEL FLEDGE $ 

FARTN CANDIDAT,MODEFAF!'I:,/REHNANT,,,/+7/+2 $SURVIVORS OF LI TEST 
$ 3  FROVIDE FOR THE POSSIBILITY OF THE CULLING VECTOR CONTAINING 1's IN THE 
$$ ENDS, WHICH WOULD DESTROY THE SHIFTING VECTORS. CONVERT SCALH TO ALL ONES. 
COND RECT6,INITIAL $ 

JTJMP TRIAG $ 

LACEL RECT6 $ 

MERGE S C A L H , , , , , T A L V E C I / C O L S C A L / + 2 / + 2  $ SETS TRAILER TO RECTANGULAR 
TRNSP COLSCAL/SCALPRO $ CONVERT COL TO ROW 
MPYAD COLSCAL,SCALPRO, /SQUID/O $ SQAURE MTX OF REAL S.F. IN PREP FOR DIAG 
DIAGONAL SQUID/FULU/*COLUMN*/O.O $FTJLU IS A CLUSTER OF ALL ONE5 LGTH=CANDIDAT 
LABEL TRIAG $ 

PARTN FULU,,MODEPART/HMPPART,TOSS,,/7/1/2:2 $l'S.LGTH 1ST =REMNANT.TOSS=COMFI 
MERGE HMYPART,,,,,FULUIHEDCLUS/+7/+1/2 $FORM CLUSTER OF HMYFART @ VEC HEAD 
PARTN HEDVECI,,HDCLUS/,HEDVECJ,,/:/1/2/2/2 $NU SHIFTER HAS LGTH=REMNANT 
MERGE TOSS,,,,,FULU/HEDTOSS!7/1/2 $FORM CLUSTER OF TOSS Ca VEC HEAD 
ADD FULU,HEDTOSS/TALCLUS/(1.0,0.0)/(-1.0,0.0) $CAP ZEROES 13 HEAD OF HM'IFAR': 
PARTN TALVECI , ,TALCLUS / ,TAL'JECJ , , / 7 11 ,' 2 / 2 SlJU SHIFTER HA3 LCTH=REMNANT 
SWITCH HEDVEC1,HEDVECJ: / -1 $ 

SWITCH TALVECI ,TAL'JECJ,' / -1 $ 

FRTFARM 1 ;O/C.N,IFJITIAL $ 

COND TEST2,INITIAL 3 If INITIAL IS NEGATPJE GO TO 2nd L1 TEST 
JUMP DEPOT $READY FOR MERGING AND GENERATING (1.ADJ 2.NU PHMNY 3.NU MMNY) 
LABEL TEST2 $ 

$Test whether one or less columns of REMNANT are left. SET PARAMETER IF SO. 
PARAML REMNANT/ /*TF!AILER*/l/V,N,REMCOL $ 

FARAM / /*LE*/V,N,SALVAGE/V,N,REMCOL/l $ 

COND DEPOT,SALVAGE $ 

SWITCH REMNANT,CANDIDAT/ /V,N,INITIAL $ 

COPY CANDIDAT/TESTER/V,N,INITIAL $ 

PARAM / /*MPY*/V,N,INITIAL/V,N,INITIAL/ -1 $ 

REPT LIPREP,l $ MAKE A 2ND PASS FOR THE LI TESTS ON HARMONICS ALONE. 
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$ 

LABEL 
COND 
JUMP 
LABEL 
INPUTTl 
INPUTTl 
EQUIV 
JUMP 
LABEL 
COND 
JSTMF 

LABEL 
INPUTT1 
INFUTTl 
EQUIV 
JUMP 
LAEEL 
COND 
JUMP 
LABEL 
EQUIV 
JUMP 
LABEL 
COND 
JUMP 
LAEEL 
EQUIV 
LABEL 
INPrJTT 1 
INPUTT1 
INPUTT1 

DEPOT $ STAGING POINT.WRAFUP.MERGE.HARMONlC GENERATION. 
QUIV1,PRIMCYC $ 

CHKADJ $ 

QUIVl $ 

1 ,  I I I 1-112 $ 

/LONGPRMI,,,, /1/2 $SKIP 1 DB 5( REAU IN LONGPRMI 
LONGPRMI,LONGRMI/PRIMCYC/PHIPI,PHII/PRIMCYC $ 

MERGBUS $ 

CHKADJ $ 

QUIV2 ,ADJC'ZC $ 

QUIV2 $ 

I ,  , * , l J - l ! 2  $ 

/LONGARMI,,,, I L / ~  SSKIF 1: DB Si READ IN LONGARMI 
L O N C A R M I , L O N G R M I / A D J C Y C / P H I A I , P H I I ; A D J C Y C  .j 

MERGBUS $ 

CHKPCEN $ 

QUIV3 ,NUPGEN $ 

CHKAGEN $ 

QUIV3 $ 

LONGPRMI,LONGRMI/NUPGEN/PHIPI,PHII/NUPGE 3 
MERGBUS $ 

CHKAGEPJ $ 

QUIV4,NUAGEN $ 

MERGBUS $ 

QUIV4 $ 

LONGARMI,LONGRMI/NUAGGEN/PHIAI,PHII/NUAGEN $ 

MERGBUS $ 

/ ,  , , , 1-112 $ 

/LONGNULL,,,,/0/2 $READ IN LONGNULL 
/LONGONE,,,,/2/2 $ SKIP 2 DB & READ IN LONGONE 

CHKFGEN $ 

1 7  I ?  
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MERGE 
PARTN 
MERGE 
ADD 
FARTN 
$$ 
MERGE 
$ $  
ADD 
FARTN 
$$ 

HMYPART,,,,,LONGNULL:LHRMHED/+7/+1 $ INCREMENT = LENGTH OF NEW HARMONIC 
LONGONE, ,LHRMHED/DUMMP,,,/+?;+l $ FARTITION LONCONE DOWN BY HARMONIC 
DUMMY,,,,,LONGNULL/HEDSHRTH/+7/+1 $APPWJD HARMONIC-SIZE NULL TO TAIL 
LONGONE,HEDSHRTH/LHRMTAL/ / ( - l . O , O . O )  $HARMONIC-SIZE CLUSTER @ TAIL 
LONGRMI,,LHRMHED:DUMMY,,,/+7/+1 $TRIM A HARMONIC INCREMENT OF ZEROES 

DUMMY,,,,,LHRMTAL/BBLRM/+7/+1 $PLUG A HARMONIC INCREMENT OF ZEROES 
FROM THE HEAD OF LONGRMI. 

ONTO THE TAIL OF LONGRMI. 
BBLRM,LHRMTAL/LONCRMJ/ $ CLUSTER=NUHARM INC + ACCEPTED 
LHRMTAL,,LONGRMJ/ ,TRIMRM,,/+7/+1 $ THIS IS THE PARTITIONING VECTOR 
NEEDED FOR COMBINING THE HARMONIC TO THE MATRIX OF ACCEPTED MODES 

$Test whether one or less columns of REMNANT are left. SET PARAMETER IF SO. 
$ 
PARAML REMNANT/ /*TRAILEX*/l/V,N,HEMCOL 3 
MERGE PHII, ,REMNANT,,TRIMRM,/PHIJ/+7/t2 $ MERGED!! 
SWITCH LONGRMJ,LONCPRMI: /V,N,PRIMCYC $ 

SWITCH LONGRMJ,LONGFRMI/ /V,N,NUPGEN $ 

SWITCH LONGRMJ,LONGARMI/ /V,N,ADJCPC S 
SWITCH LONGRMJ,LONGARMI/ /V,N,NUAGEN $ 

SWITCH PHIJ,PHIPI/ /V,N,FRIMCPC $ 

SWITCH PHIJ,PHIPI/ ,’V,N,NUPGEN $ 

JWITCH FHIJ,FHIAI/ ;V,N,ADJCUC $ 

SPJITCH FHIJ,PHIAI: /V,N,NUAGEN $ 

SWITCH HEDVECI,FHHED/ ;V,N,FRIMCYC j 
SWITCH HEDVECI,A”ED/ /V,N,ADJCYC $ 

SWITCH HEDVECI,PHHED/ /V,N,NUFGEN $ 

SWITCH HEDVECI,AHHED/ /V,N,NUAGEN $ 

SWITCH TALVECI,PHTAL/ /V,N,PRIMCYC $ 

SWITCH TALVECI,AHTAL/ /V,N,ADJCYC $ 

SWITCH TALVECI,PHTAL/ /V,N,WPGEN $ 

SWITCH TALVEC1,AHTALI /V,N,NUAGEN $ 

$ 
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PARAM 
COND 
$ 
COND 
JUMP 
LABEL 
SWITCH 
PARAM 
FARAM 
JUMP 
LAEEL 
C: 0 ND 
JUMF 
LABEL 
SWITCH 
FAEAM 
FAR AM 

#JUMP 
LABEL 
COND 
JUMP 
LABEL 
SWITCH 
PARAM 
PARAM 
JUMP 
LABEL 
SWITCH 
PARAM 
PARAM 
LABEL 
$ 

//*EQ*/V,N,HARMDONE/C,Y,MODSFEC/V,N,HARMNO $ IF # HARM=MODSFEC =>DONE 
ORTHOG,HARMDONE $JUMP OUTSIDE HARMONIC LOOP IF HARMONICS ARE DONE 

PRIMOUT,PRIMCYC $ 

ADJHRMNY $ 

PRIMOUT $ 

REMNANT,FGENI/ /V,N,PRIMCYC $ 

//*MF'Y*/V,N,PRIMCYC/V,N,PRIMCYC/ -1 $ RESET PRIMCYC TO POSITIVE 
//*MPY*/V,N,ADJCYC/+l/-1 $ ENABLE THE LOOP FOR THE ADJOINT 1ST HARM 
HLOOPEND $ 

ADJHRMNY $ 

ADJOUT,ADJCPC $ 

PHMNZ $ 

ADJOUT $ 

REMPJANT , AGEN I / / ' J  , N , ADJCYC 3 - - - - - - - 
/ /~MFP*/V,N,ADJCYC/V.N,ADJCYC/  -1 $ RESET ADJCYC To POZITIVE 
:/*MPY+/V,N,NUPGEN/+l/-l $ ENABLE THE LOOP FOR THE PRIM HIGHER HARM 
HLOOFEND $ 

PHMNZ $ 

PHMNOUT , NUFGEN $ 

AHMNZ $ 

PHMNOUT $ 

REMNANT,PGENI/ /V,N,NUPSEN $ - - - - - - - -  

/ / * M F Y * / V , N , N U F G E N / V . N . N U P G E "  -1 $ RESET NUPGEN TO POSITIVE 
//*MPY*/V,N,NUAGEN/+l/-1 $ ENABLE 'THE LOOP FOR THE ADJ HIGHER HARM 
HLOOPEND $ 

A " z  $ 
REMNANT,AGENI/ /V,N,NUAGEN $ - - - - - - -  

//*MPY*/V.N,NUAGEN/V,N,NUAGEN/ -1 $ RESET NUAGEN TO FOSITIVE 
//*MPY*/V,N,NUPGEN/+l/-1 $ ENABLE THE LOOP FOR THE PRIM HIGHER HARM 
HLOOPEND $ 
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FARAM 
$ $  

$ $  

COND 
JUMF 
LXEEL 
COND 
COND 
COND 
J'JMP 
$ 

LABEL 
FURGE 
REPT 
$ 
LABEL 
S 
MERGE 
FARTN 
MERGE 
ADD 
PARTN 
MERGE 
PARTN 
PARTN 
LABEL 

/ /*LE*/V,N,TESTOVER/V,N,REMCOL/l $ TESTOVER =-1 IF REMCOL ( < ! = )  1 
THIS IS THE EXIT IN CASE FEWER HARMONICS PASS 
THE LI TEST THAN ARE SPECIFIED BY MODSFEC 

ALTCHK,TESTOVER $ EXIT GdHHEN HARMONICS ARE EXHAUSTED PRIOR TO MODSPEC 
USUAL $ 

ALTCHK $ 

WSUAL,ADJCYC $ ADJOINT GETS A CHANCE TO GENERATE A SINGLE 
0RTHOG.NUPGEN $ PREVENT ANOTHER HARMONIC TO BE GENERATED FROM A SINGLE 
USUAL,NUAGEN $ ADJHRM GETS A CHANCE TO GENERATE A SINGLE 
ORTHOG $ 

USUAL 3 
KMMTX/MODSPEC $ 

HMNICGEN, 939 $ END OF HARMONIC GENERATOR LOOP t%%%%%%%%9%t~%%tS%%%%%%' 

ORTHOG $ 

FHHED, , , , .LONGNULL/LONGHED1/+7/tl $**START Of HEADFHI CONSTRUCTION 
LONGONE, ,LONCHEDl/DUMMY, , , /+7/+L 8 LUMP TO MERGE ON HEAD 
DUMMY, , , , ,LONGNULL/MISSTALL/+7/+1 $ ONE MISSING FROM TAIL 
LONGONE,MISSTAIL/LONGTALl/ / (  - 1 .0 .0 .0 )  $**START OF TAILFHI CONSTRUCTIO! 
LONGONE, ,LONGPRMI/ ,DUMMY. . / + 7 / + 1  $ALL ONES OF LGTH=ACCEFTED JECTORS 
DUMMY, . , , ,LONtiNULL/HEADER/+7/+1 SHEAD CLUSTER OBVERSE OF LONGFRMI 
LONGHEDl, ,HEADEX/ ,HEADPHI, , / + 7 / + 1  $ SAVE FOR DELIVERY TO ORTHOG 
LONGTAL1, ,LONGPRMI/ ,TAILPHI. , / + 7 / + 1  $ SAVE FOR DELIVERY TO ORTHOG 
NOBIZNEZ $ GET OUT WITH OWTFUT SAME AS INPUT 

OUTPUT1, , , , , I  / - 1 / 3  $ SET DEFAULT LABEL 
OUTPUT1 PHIPI.HEADPHI,TAILPHI,PHIAI. / /0/3 $ 

LABEL PRINTOUT $ 

FRTFARM //O/C,N,HARMNO $ 

LABEL FINIS $ 

END $ FINISH OF DMAP PROGRAM FOR RITZ HARMONICS 
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RITZRTHG.DMP 
SELF AND DUO ORTHOGONALIZATION 

NASTRAN MAXFILES = 60,FILES = (INP3.INP4) 
APP DMAP $ PROGRAMMED FOR 1988 NASTRAN. OUTPUT TO PUNCH FILE. 
$$ EXECUTES AFTER BOTH RITZFTJND AND RITZHARM TO ORTHOGONALIZE RITZ MODES 
BEGIN $ $$ORTHOG.DMP 
I NPUTT 1 
INPUTT1 
PARTN 
COPY 
PARTN 
MERGE 
FARTN 
MFYAD 
COPY 
W Y A D  
SCALAR 
SCALAR 
PARAMR 
ADD 
FARTN 
MERGE 
ADD 
PARTN 
MERGE 
MPYAD 
ADD 
PARAM 
PARAML 

1 ,  , , , 1 - 1 1 3  $ 

/PHIFI,HEADFHI,TAILPHI,PHIAI, / 0 / 3  $ 

PHIP1,HEADPHI. / , ,FHIl. /+7/+2 $ 

PHIl/ZETAl/ 0 $ 

HEADPHI, .TAILFHI:DUMMY. , , : + 7 / t l  $ 

DUMMY, , , , .HEADPHI/EBLHI:+?/+l $ 

PHIFI.BBLH1. / , ,PHIZ. : + 7 / + 2  $ 

PHIl,PHI2. /NUM/+1:-1 $. 

PHIl/CLONPHIl: 0 $ 

CLONPHI1,FHIl. ,‘DEfl/+L:+l $ 

NUM/ /l;l/ ,‘ !V,N.SPXTJrJM $ 

DEN/ 11/11 / :V,N,SPXDEN $ 

/ /*DIVC*/ / / / V . N , A l l / V , N . S P X N U M / V , N , S P X D E N  $ 

PHI 1, FHI 2 / ZETA2 /V, fJ , A 1  1 $ SINGLE PREC . WON ’ T TAKE DEL PREC ! ! ! 
TAILPHI, ,HEADFHI/DUMMD. , ,!+7:+1 $ 

DUMMD,,,,,TAILPHI/BBLTI/+7/+1 $ 

BBLTI,TAILPHI/PTALCLUI/ $ 

TAILPHI, ,PTALCLUI/,BUILDI, , /+7/+1 $ 

ZFTA1, ,ZFTA2, ,BUILDI. /ZETAI/+7/+2 $ 

ZFTAI,PHIPI, /COEFI/+1/+1 $ 

BBLHI,HEADPHI/PHEDCLUI/ $ 

/ /*ADD*/V,N,ROWCOW/2/0 $ 

PHIPI/ /*TRAILER*/l/V,N,PCOL 3 
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LABEL 
PARAM 
PARTN 
F'ARTN 
MERGE 
FARTN 
SOLVE 
FARTN 
MERGE 
ADD 
FARTN 
FARTN 
MERGE 

ADD 
FARTN 
MPYAIj 
MERGE 
MFYAD 
SWITCH 
SWITCH 
SWITCH 
SWITCH 
%ITCH 
SWITCH 
SWITCH 
FARAM 
COND 
REPT 
LABEL 
COPY 
MPYAD 
MATPRN 

ORTHLUP $ TOP OF SELF ORTHOGONALIZATION LOOP 
/ /*ADD*/V,N,ROWCOW/V,N,ROb?COW/l $ 

COEF'I,PHEDCLUI, / ,CAI, /+7/+2 $. 

BBLHI, ,TAILPHI/DUMVEC, , , /+7/+1 $ 

DUMVEC, , ,HEAI?PHI/BBLHJ/ +7/+1 $ 

COEFI.BBLHJ, / , ,CFI, /+7/+2 $ 

CAI,CFI/AIN/-1/-1/2 $ 

BBLTI, ,HEADPHI/DMY. , /+7/+1 $ 

DMY, , , , ,TAILPHI/BBLTJ/ +7/+1 $ 

PTALCLUI,BBLTJ/FTALCLUJ/ $ 

TAILPHI, ,FTALCLUJ/ ,EUILDJ,,/+7/+1 $ 

PTALCLUJ, ,TAILFHI/ ,UNIT. , / + 7 / + 1 /  / 2  $ UNIT IS RECTANGULAR S.P. 
AIN,UNIT, , , ,BUILDJ/AJN/+7/+2 $ 

PHIFI,PHEDCLUJ, , ,PHIZ, /+7/+2 $ 

PHEDCLUI.EBLHJ/PHEDCLUJ/ $ 

PHIZ,AJN, /ZETAX/O$ 
ZETAI, ,ZETAX, ,BUILDJ, /ZETAJ/+7/+2 $ 

ZETAJ.PHIP1, /COEFJ/+l/+l $ 

ZETAI,ZETAJ/ / -1 $ 

BBLHI,BBLHJ/ / -1 $ 

PHEDCLUI.PHEDCLUJ/ / -1 $ 

BBLTI,BBLTJ/ / -1 $ 

PTALCLUI,PTALCLUJ/ / -1 $ 

BUILDI,BUILDJ/ / -1 $ 

COEFI.COEFJ/ / -1 $ 

/ /*EQ*/V,N,SELFDUN/V,N,ROWCOW/V.N.PCOL $ 

DUALORTH,SELFDUN $ 

ORTHLUP,999 $ 

DUALORTH $ 

ZETAI/CLONZETA/ 0 $ 

CLONZETA,ZETAI. /ZSQ/+l/+l $ 

ZSQ,,,I// $ 
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$ 
$ START OF DUAL ORHTOGONALIZATION OF ADJOINT MODES. 
$ 

INFUTTl / ,  , , ,/-1/4 
INFUTTl /MLL,KLL,, ,/0/4 $ 

MFYAD ZFTAI,MLL, /ZEM/+l $ 

MPYAD ZEM.PHIA1, /KOEF/O $ 

DIAGONAL MLL/UNITY/*SQUARE*/O.O $ 

SOLVE KOEF,UNITY/BETA/-1/+1/+2/+2 $ 

MPYAD PHIAI,BETA, /OMEGA10 $ 

MPYAD OMEGA,MLL, /MEGM/+1/+1 $ 

MPYAD MEGM.ZETA1, /CENMASS/O $ 

MPYAD 0MEGA.KLL. /MEGK/+1/+1 $ 

MPYAD MEGK,ZETAI, /GENSTIF/O $ 

MATFRN GENMASS,ZETAI,OMEGA,GENSTIF,// $ 

OUTPUT? ZETAI,OMEGA,CENMASS,GENSTIF.//O/C,Y~Nl=ZZZ~ 
C,Y,N2=MEG/C,Y,N?=MMM/C,Y,N4=KKK $ 

END $ FINISH OF ORTHOGONALIZATION OF RITZ VECTORS 

359 



R I T Z  MODES FOR UNSTJMMETRIC MATRICES 
DMAP CODING OF THE THEORY 

APPENDIX D 
- - - - - - - - - -  

nEMONSTRATION FROBLEM FOR UNSYMMETRIC RITZ 
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APPENDIX E 
- - - - - - - - - -  

GEPJMASS KAPPA = .007 

1 .00000E+00  -1.57700E-21 -1.75392E-21 -4.23772E-26 
7.33943E-25 1.00000E+00 5.52286E-26 1.84410E-23 
4.96876E-22 -1.76725E-24 1.00000E+00 -1.41962E-23 
6.08346E-27 -4.10067E-23 6.50197E-24 1.00000E+00 

GEXMASS KAPPA = 0.95 

1.00000E+00 -3.41619E-17 -2.08085E-17 -7.77767E-17 -3.55682E-15 
6.80886E-17 7.19268E-16 -3.59782E-16 1.85463E-15 

-2.09800E-17 1.00000E+00 -2.66490E-16 5.34076E-15 4.56150E-17 
-1.0807 2732E-14 1.36521E-14 -1.98969E-13 

-7.27244E-16 3.14776E-15 1.00000E+00 1.58474E-15 6.56536E-16 
-7.71337E-15 -3.17466E-14 1.96339E-14 -4.29536E-14 

-6.40719E-18 -1.6605OE-15 5.80912E-17 I.OOOOOE+00 4.28422E-19 
1.45089E-15 7.28234E-15 -5.87202E-15 1.86094E-14 

-1.15957E-15 1.05575E-16 4.21965E-17 1.36209E-16 1.00000E+00 
-2.06182E-16 -1.70354E-15 4.34321E-16 -2.34621E-15 

-4.61736E-17 4.20176E-15 -3.42951E-16 1.05352E-14 5.74604E-17 
1.00000E+00 2.34472E-14 1.11612E-14 -1.95622E-13 

-1.94247E-18 -4.76531E-16 3.61424E-17 -7.44025E-16 4.46676E-18 
1.22754E-15 1.00000E+00 -1.59921E-15 2.45933E-14 

2.42787E-18 8.22934E-16 -2.48630E-17 1.54808E-15 -1.46353E-17 
-6.75527E-16 -7.19174E-16 1.00000E+00 -1.18324E-14 

1.14403E-18 -1.60473E-17 -1.99198E-18 6.85738E-18 -1.30097E-18 
3.33071E-17 -6.84577E-18 -9.50914E-17 1.00000E+00 
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GENSTIF KAPPA = .007 

1.04682E+01 6.15654E-04 -9.26258E-04 -2.98338E-10 
-3.08635E-04 4.61758E-02 2.74302E-08 5.87860E-08 
-8.90200E-04 -5.23407E-08 1.36253E-0'2 -3.94594E-08 
-8.76229E-10 2.54442E-05 -1.91S82E-05 2.57602E+01 

GENSTIF KAFPA = 0 .95  

3.3919CE+02 -6.69263E-01 -2.44002E-01 -9.04235E-01 -3.12387E+02 
1.17373E+OO 2.61338E+Ol -1.37057Et00 2.05697E+01 

-1.08030E-02 3.15758E-01 -5.48427E-03 1.31833E-01 1.07321E-02 
-1.70708E-01 ' 8.53201E-01 6.03132E-01 -2.68652E+00 

-3.09520E-02 1.61339E-02 2.06822E-02 2.84852E-02 2.85713E-02 
-3.69205E-02 -2.37364E-01 1.00253E-01 -6.03664E-01 

-8.47928E-01 1.11503E+02 -8.23610E+00 6.49374E+02 1.19001E+00 
-8.02691E+02 3.80773E+02 3.22937E+02 -4.57428E+03 

-3.07444E+02 6.23311E-01 2.25336E-01 8.38877E-01 2.89818E+02 
I 

-1.08889E+00 -2.42260E+01 1.27283E+00 -1.90819E+01 
7.98571E-01 -1.04804E+02 7.74130E+00 -5.92276E+02 -1.12001E+00 

7.54470E+02 -3.57896E+02 -3.03535E+02 4.29948E+03 
~ 1.98390E-01 2.15040E-02 -8.83532E-03 2.23315E-02 -1.85797E-01 

-2.80937E-02 3.86155E-01 -1.58374E-02 6.00169E-02 
6.36402E-02 1.95278E+00 -1.21436E-01 4.85570E+00 -5.51377E-02 

-6.20209E+00 6.10810E+00 5.60222E+00 -7.46195E+01 
1.76325E-02 -2.24893E+00 1.66211E-01 -5.93498E+00 -2.44872E-02 

7.57854E+00 -7.62053E+00 -6.48352E+00 9.22406E+01 
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